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Abstract. The radiation field of toroidal-like, timedependent current configurations is 
investigated. The infinitesimal time-dependent configumtions are found outside which the 
electromagnetic strengths disappear but the potentials survive. For a number of time 
dependences, their finite radiationless counterparts can be found. In these oses topologically 
non-hivial (unremovable by a gauge transformation) electromagnetic potentials exist outside 
sources. The well-define$ rule obtained for constructing time-dependent infinitesimal so!" 
suggests the existence of finite non-trivial radiatio?less sources with an arbitrary time 
dependence. The latter can be used m cany out timedependent Aharonov-Bohmlike 
experiments and to transfer the information. Using the Neumann-Helmholtz parametrization of 
the -nt density we represent the timedependent electromagnetic field in a form convenient 
for applications. 

1. Introduclion 

Interest in timedependent currents flowing in toroidal coils arose from the following remark 
made by James Clerk Maxwell in his memoir On physical lines of force [I]: 

'Let B, figure 3, be a circular ring of uniform section, lapped uniformly with covered wire. 
It may be shewn that if an electric current is passed through this wire, a magnet placed 
within the coil of wire will be strongly affected, but no magnetic effect will be produced 
on any external point. The effect will be that of magnet bent round till its two poles are in 
contact. 

If the coil is properly made, no effect on a magnet placed outside it can be discovered, 
whether the current is kept constant or made to vary in stren,gh; but if a conducting wire C 
be made to embrace the ring any number of times, ai electromotive force will act on this 
wire whenever the current in the coil is made to vary; and if the circuit be closed, there 
will be an actual current in the wire C.' 

The figure 3 mentioned in this passage shows the torus with a poloidal winding on its 
surface. At the present time, it is known that, in general, this Maxwell assertion is not 
correct. It turns out that for a timedependent current in a toroidal coil the electromagnetic 
field strengths appear outside it. Qualitatively this was shown by Mitkevich [2] and Page 
[3]. The corresponding experiments were performed by Mitkevich [Z], Ryazanov [4], 
Bartlett and Ward [5 ]  and many others. Quantitative results were obtained in [6] where 
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the electromagnetic fields were evaluated for a number of time dependences for current 
flowing in a toroidal coil. M e r  all, experimentalists widely use toroidal transformers for 
their own purposes without philosophizing on the subjcct. The sole exception for which 
Maxwell’s claim holds is the current which increases linearly in time which flows in the 
toroidal coil. In this case H = 0 and E is independent of time outside the toms (see, e.g., 
Miller 171). The question of the energy transfer into the wire C embracing the toms was 
considered by Heald [8] (the difficulty is that the Poynting vector equals zero for a linearly 
increasing current). 

In a previous paper [9], we studied the electromagnetic field of static toroidal-like 
configurations, their interactions with an extemal electromagnetic field and possible physical 
applications. It is the goal of the present consideration to study non-static current 
configurations. It would probably be appropriate to explain the meaning of the words 
‘elementary toroidal sources’ in the title of this paper. The words ‘toroidal source’ mean 
the poloidal current flowing in the winding of the toroidal solenoid (TS), which in tum may 
be an element of a more complex configuration. When the dimensions of this configuration 
tend to zero, we obtain an ‘elementary toroidal source’. The reason for the treatment of an 
elementary toroidal source is that it leads to a considerable simplification of the theoretical 
consideration. A TS with finite dimensions has a number of non-trivial topological properties 
(see, e.g., reviews [lo]). Suppose that these properties survive when the dimensions of the 
TS tend to zero. Thus, if we find some interesting properly of the elementary toroidal source, 
there is a chance that it might survive in the finite toroidal configuration. This is confirmed 
for the simplest toroidal configurations for which analylical solutions can be found. As an 
example, we mention the configuration consisting of a TS with a linearly increasing current 
flowing in its winding and the double charged layer lying at the hole of the TS [9].  Outside 
this configuration, the electromagnetic strengths disappear but a non-trivial (i.e. unremovable 
by gauge transformation) time-dependent vector potential (VP) survives. Thus, the possibility 
of performing a time-dependent Aharonov-Bohm-like experiment arises. However, the 
linear time dependence of the current is unrealistic. It is the aim of this paper to find 
elementary chargecurrent configurations possessing the radiationless properties mentioned 
above but with an arbitrary time dependence. 

The plan of our exposition is as follows. The radiation of elementary time-dependent 
toroidal-like configurations, in the winding of which a time-dependent current flows, is 
studied in section 2. It ”s out that two different branches of these configurations 
generate essentially different electromagnetic fields. However, the current sources in the 
same branch generate the same electromagnetic field if their time dependences are properly 
adjusted. In section 3 we give an example of an elementary radiationless charge-current 
source having the property that eleczomagnetic field strengths disappear outside it, but 
that the time-dependent potentials survive there. Extended toroidal-lie current sources are 
considered in section 4. By using the Neumann-Helmholtz parametrization for the current 
density convenient formulae for the timedependent electromagnetic fields are obtained. 
Using these, more general elementary radiationless charge-current sources of different 
multipolarities are constructed in section 5. These elementary configurations have finite 
counterparts. Those which can be treated analytically are radiationless and have non- 
trivial electromagnetic potentials outside them. Although the electromagnetic field of more 
complicated finite configurations cannot be obtained in a closed form, the electromagnetic 
field of their infinitesimal analogues can. The well prescribed rule for the construction of 
these elementary radiationless configurations found in section 5 suggests that their finite 
radiationless counterparts will also possess non-trivial electromagnetic potentials. A short 
discussion of the results obtained and a summary are given in sections 6 and 7, respectively. 

G N Afanasiev and Yu P Stepanovsky 
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2. Radiation of elementarg toroidal sources 

2.1. A pedagogical example: time-dependent circular current 
According to the Ampere hypothesis the distribution of the magnetic dipoles M(r)  is 
equivalent to the current distribution J ( r )  = curlM(r). For example, the circular current 
flowing in the Z = 0 plane 

J = Zn,S(p - d)S(z )  (2.1) 

M = Z n@(d - p)6(z) (2.2) 
lying in the same plane (O(x)  is a step function). When the radius d of the circumference 
along which the current flows tends to zero, the current J~becomes ill defined (it is not 
clear what the vector nc means at the origin). On the other hand, the vector M is still well 
defined. In this limit the elementary current (2.1) turns~out to beequivalent to the magnetic 
dipole oriented normally to the plane of this current: It is convenient to introduce Z/rrd2 
instead of Z in equations (2.1) and (2.2). Then, in the limit d -+ 0 one gets 

is equivalent to the magnetized sheet 

M = Zns3(r) (S3(r) = S(p)S(2)/2irp) (2.3) 
and 

J = Z cur1(nS3(+)). (2.4) 
Equations (2.3) and (2.4) define the magnetization and current density corresponding to the 
elementary magnetic dipole. These questions were considered in detail in 191. Now let the 
intensity of the elementary current change with time: 

Jo = fo( t )  curl(nS"(r)) (2.5) 
(the factor I is absorbed into fo). The vector potential corresponding to this current is 
elementarily obtained 

1 C 
(2.6) 

From now on the time derivative will be denoted either by a point above the letter or 
(especially for higher derivatives) by superscripts. For example, f ( 3 )  = 7 = d3f/dt3. The 
argument of the f functions, if not indicated, means t - ( r / c )  everywhere in this section. 
The electromagnetic field strengths are 

Ao = --Do(T x n) Dx = D ( h )  = .& + i f x .  
c2r2 

where, for brevity, we put 
C2 

r r2 
Fk = F ( h )  = fk(2) + 3C.& + 3 - h  

C2 

r Gx = G(h) = fr) + :fv+ ,.Ti. 

The flux of the electromagnetic energy through the sphere of the radius r is 
2 .  C 

S = Prr dQ = -DOGO P = -(Eo x Ho). (2.8) 

This flux is positive for large distances and determined by the second derivative of 
fo(So sx &$). However, for small distances it may be negative. These results are 
well known and may be found in many textbooks (see, e.g., Stratton [l 1 I). 

s z  3c5 4rl 
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2.2. The elementary radinting toroidal solenoid 

The case which is next in complexity is the radiation of a current flowing in the winding 
of an elementary (i.e. infinitely) small toroidal solenoid. According to [9], this elementary 
current is given by 

jl = fi(r)cur~(2)(n~3(T)) (2.9) 

where curl' = curlcurl and n means the normal to the equatorial plane of the TS. The VP 
and field strengths are equal to 

G N Afanasiev and Yu P Stepanovsky 

1 1 Ai = -n-Gl + -T(wz)F~ 
c3r c3r3 

1 .  1 1 
c4r Pr3 c4r' 

(2.10) 
dl = o  

El = ~ - - G I  - - T ( T ~ ) F ~  Hi = -(T x n)Di .  

In this and the following equations in this section we omit the 6 function terms giving the 
field values at the origin (to which the current is confined). Thus, equations (2.10) are valid 
everywhere except for the origin. 

2.3. More complicated elementary toroidal sources 

We consider a hierarchy of Ts in which each turn is again a TS. The simplest example is 
the usual TS (which is obtained by installing an infinitely thin TS in a single turn with the 
current (2.5) in it). We denote this TS by T1 (the initial current source (2.5) will be denoted 
by TO). The case which is next in complexity is obtained when each turn of TI is replaced 
by an infinitely thin TS with an alternating cwent  in its winding. This current configuration 
is denoted by Tz. When its dimensions tend to zero, we get [9] 

j ,  = f,(r)curl~) n83(r). (2.11) 

The corresponding VP and field strengths are given by 

By comparing equations (2.6), (2.7) with (2.12) we conclude that the electromagnetic fields 
coincide for the current configurations TO and Tz (everywhere except for the origin) if 
the following relation between the time-dependent intensities is fulfilled f;" = - fo/c2. 
This means, in particular, that the electromagnetic field of the static magnetic dipole 
(fo = constant) coincides with that of the current configuration TZ if the current in it 
quadratically varies with time (f2 = -foc2rz/2). It follows from this that the magnetic 
field of the usual magnetic dipole can be compensated everywhere (except for the origin) 
by the time-dependent current flowing in Tz. Consider now the periodical currents 
fi = fiocosut and fo = fmcoswt. Clearly, the electromagnetic fields of TO and Tz 
coincide if fio = f ~ c 2 / 0 2 .  Now we are able to write the electromagnetic field for the 
point-like toroidal configuration of the arbitrary order. Let 

j ,  = fm(t) cur~( ' "+I ) (d~(~)) .  
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Then, for m even (m = 2k, k 0) 

(2.13) 

The flux of rhe electromagnetic energy through the sphere of the radius r is equal to 

S=-- 2 1 (=) W+1) 
3pk+5'= Dzk ' 

On the other hand, form odd (m = 2k + 1 ,  k 2 0), 

(2.14) 

We see that there are two branches of toroidal point-like currents generating essentially 
different e1ei:tromagnetic fields. A representative of the first branch is the usual magnetic 
dipole. The electromagnetic field of the kth member of this family reduces to that of the 
circular current if the time dependences of these currents are properly adjusted: 

f ix)  = (-1)k fo(t)/C= (k > 0). (2.15) 

We remember that the lower index of the f functions selects a particular member of the first 
branch, while the upper one means the time derivative. The representative of the second 
branch is thc: elementary TS. Again, the electromagnetic fields of this family are. the same 
if the time dependences of currents are properly adjusted 

fgl = ( - l ) k f l ( t ) / c 2  (k 2 0). (2.16) 

From the equations defining the energy flux it follows that, for high frequencies, the toroidal 
emitters of higher order are more effective (as the time derivatives of higher orders conmbute 
to the energy flux). 

So far we have used the usual TS as a cornerstone for constructing more complicated 
current configurations. Under the term 'usual' we mean the toms (p - d)' + zz = RZ with 
the poloidal current flowing on its surface. The VP corresponding to this current falls as 
r-3 at large distances 
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Here n is the unit vector normal to the equatorial plane of the TS. It has been shown in 
[12] that it is possible to distribute the currents inside the torus in such a way as to cancel 
the leading term (- r3) in the expansion of the VP. Then the first non-vanishing term in 
the expansion of the VP has the form 

G N Afanasiev and Yu P Stepanovsky 

(2.17) 

where Q$, has the following symmetric traceless form: 

Q ; ~ , ( X )  = xixjxkxi - 7 ( 6 i j x ~ x ~  I + sixxjxi + G ~ ~ x ~ x ~  + sjkxixI + +xixk + Skrxixj)r* 

+ &(6ij&t + 8iksj1 + 8i&a)r4. 

This VP falls like r -5 for r --f M. With this TS taken as a cornerstone and using the 
procedure described above we can construct a new hierarchy of TSS. This game may be 
continued further. More complicated current configurations may be found inside the torus 
for which the VP falls like r7. This current configuration may, in turn, be used as a 
cornerstone for the construction of TS installed in one another. These cornerstone current 
configurations correspond to higher-order toroidal multipoles 1121. At large distances all of 
them may be symbolically written in the form 

(2.18) 

where Q!!,,{, is the symmetric traceless form of order 1. Clearly, A!) fall as r-’-’ for 
r + CO. Only the even values of 1 correspond to the finite configurations of poloidal 
currents found in [12]. As asymptotic form (2.18) satisfies conditions div A = 0, curl A = 0 
for any 1, the question arises as to the possible eiistence of finite current toroidal-lie 
configurations (i.e. ones outside of which E = H = 0) corresponding to odd 1. So far we 
have not identified them. 

3. On the radiationless sources of electromagnetic fields 

Consider the elecIric dipole oriented in the n direction. Its charge density is 

pd = e[s3(r + a n )  - s3(r - an)]. 

For small separation a this reduces to 

pd = 2ea(nV)~~(r) .  

Let the intensity of this dipole change with time: 

pd = fd(t)(nv)a3(r) 

(the factor 2ea is absorbed into fd). The corresponding current density is given by 

j, = -fdns3(T). 
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These densities generate the following potentials and field strengths (see, e.g., Weinstein 
[W: 

1 
@d = --(7ZT)Dd cr2 

1 
c2r2 
1 1 

c4r c2r3 

Ad = -nfd/rC 

(3.1) H d  = -(T X n ) b d  

Ed = -nG,j - --(Tn)TFd. 

From a comparison of equations (2.10) and (3.1) we conclude that the field strengths of the 
timedependent current flowing in the winding of the infinitely small TS can be compensated 
by that of the electric dipole if the time dependences are properly adjusred: fd = -f,/C". 
Then, the total chargecurrent densities are: 

p = --fi(nV)S3(v) j = fi(t),curl(2)nS3(r)+ L3nS3(r). (3.2) 
1 .  

CZ C 2  
In the surrounding space E = H = 0 but the potentials differ from zero: 

1 
c3rz 

4 = -(nr)Dl 

1 1 
c2rZ c3r3 

A = --nDi + - - - T ( T ~ ) F , .  
(3.3) 

Thus, outside this composite object (electric dipole and TS placed at the same point) there 
are non-vanishing time-dependent electric and vector potentials despite the disappearance 
of the field strengths. The simplest example corresponds to f, = constant. Then, 

$ = O  A = f1[3r(nr) - nr2]/cr5 (3.4) 
which coincides with the VP of the elementary (i.e. infinitely small) static TS. The next-in- 
complexity case is the composite object consisting of the static electric dipole (fd = f = 
constant) and the current which linearly change with time in the winding of the TS: 

p = f (nv ) s3 ( r )  

E = H = 0 4 = - f ( n r ) / r 3  (3.5) 

j = - 2 f t  curl") na3(r) 

A = - c t f [ 3 r ( n ~ )  - r2n] / r5 .  
A counterpart of (3.5) with finite. dimensions is the current linearly rising with time flowing 
in the winding of TS and the double charged layer filling the hole of the same TS (see 
the appendix). Outside this configuration the electromagnetic strengths vanish, but the 
non-trivial (that is, unremovable by a gauge transformation) VP exists. 

Another interesting case is the compensation of the electromagnetic field generated by 
the oscillating electric dipole by that of the periodical current flowing in the winding of the 
TS: 

p pdCOS(nV)S3(T)f 

C2 

w2 j = j d  + jl= fos in  mt - - curl(2) n83(T)] 

A=7fn(cosQ+-ssmS2 1 c .  
or 
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It tums out that the field strengths are compensated if the charge density of the electric 
dipole oscillates in counter-phase with the TS current. 

There are several references [14-211 in which the non-radiating sources are treated. 
In some of them the electromagnetic potentials are zero and, thus, of no interest to us. 
The time-dependent chargecurrent densities treated here meet the general non-radiation 
conditions obtained in the cited references, up until now it was not known whether non- 
trivial non-radiating time-dependent sources could exist in principle. As far as we know, 
the first such example has been presented in [9]. 

Non-trivial time-dependent electromagnetic potentials can be used as a new channel for 
information transfer (by modulating the phase of the charged-partial wavefunction) and for 
the performance of time-dependent Aharonov-Bohm-lie experiments. 

G N Afanasiev and Yu P Stepanovsky 

4. The finite toroidal-like conligurations 

4.1. The Neumann-Helmholtz parametrization for electromagnetic potentials and strengths 

Consider now the time-dependent current distribution confined to a finite region of space: 

j ( r ,  t )  = mm. (4.1) 

An arbitrary vector function and, in particular, the cuent  distribution can be presented in 
the form (Neumann-Helmholtz parameekation) 

(4.2) j ( r )  = VYl + curl(r%) + curP) ( r~3) .  

The VP corresponding to the current density (4.1) is given by 

A = V O ~  + C W ~ ( R Z Z )  + ~ ~ r l ” ( ~ a 3 ) .  (4.3) 

Clearly, equation (4.3) is the Neumann-Helmholtz parametrization for the VP. The functions 
entering into it are 

(4.4) 

Here R = 11. - 7‘1. To be complete, we write the corresponding scalar electric potential 

4 = --h 1 .  +4HF(f)’&(r) ( F ( t )  = j ‘  f (t) dt). (4.5) 

Here the point above 4 means the time derivative, and $stat is the scalar potential originating 
from the time-independent part of the charge density (if it exists): = ipstat(r’)dV‘. 
It is convenient to represent the field strengths in the same form as j and A: 

C 

It turns out that 
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These representations are convenient because the potentials and strengths are obtained from 
relatively simple integrals, their time and space derivatives. 

It is known [9] that the functions W2 and W3 cany information on the magnetic and 
toroidal (electric) moments, respectively. Thus, putting W~(T) = W2(r)Em(0, (p) and 
Y ~ ( T )  = V,(r)&,(6', (p) we obtain the formulae describing the radiation of particular 
magnetic and toroidal (electric) multipoles. The functions W2 and Ys define the radial 
distribution of the current sources. Developing the function g = f (t  - ~ R / c ) / R  over the 
spherical harmonics 

we obtain for the particular lm multipole 

(4.8) 

(4.9) 

(no sum over I ,  m here). 

4.2. Transition to the point-like limit 

Equation (4.9) define the integrals for the finite spatial current distribution. To obtain the 
point current limit we follow the method used by Rowe [ZZ] for the evaluation of the integral 
11 entering into the definition of 4 (see equation (4.5)). One simply puts 

w ~ ( T )  - E ~ ( - v ) J ~ ( ~ ) .  (4.10) 

It should be clarified what yI,(-V) means in the right-hand side of this eqoation. We write 

(4.1 1) 

where E,,,@, (p) is the usual spherical harmonic. Clearly, f i , (x)  is a homogeneous function 
(of the order I )  in Cartesian variables x ,  y, z. For example, 

B,W = r f q m ( e ,  C) 

(4.12) Y Z O - 2 2 - x  2 2  - y .  

To obtain q,(-V) we change xi by (-a/axi) in equation (4.11). In particular, 

a2 az az 
Y*(l(-V) - 2- - - - - 

az2 ay2 az2' 
(4.13) 

Many of the properties of the functions $,(n) and their physical applications are collected 
in [23]. Now we substitute (4.13) into (4.4) and integrate by parts: 

I k  - K m ( v ) f  (t - ') / .  (4.14) 

Inserting this expression into equations (4.4H4.7) we obtain the electromagnetic potentials 
and strengths describing the elementary source. 

C 
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5. More general radiationless sources 

Having obtained explicit expressions for the extended and point-lie sources, we now try 
to construct the radiationless sources of higher multipolarities. Consider charge and current 
densities corresponding to the oscillating quadrupole moment: 

pq = fp(t)KnV)2 - fAlS3(r) 

jq = -fq(r)tn(nv) - +vIs’(T). 

G N Afanariev and Yu P Stepanovsky 

(5.1) 

On the other hand, consider current density (4.2) with 

It turns out that the oscillating quadrupole charge-current configuration (5.1) and a pure 
current.configuration (5.2) placed at the same point generate total field strengths equal to 
zero everywhere except for the origin if the following relation is fulfilled: fq = 2fc/c2.  
The total charge-current densities are equal to 

For fc = constant, fq = 0 we get the following static configuration: 

(5.4) 

This VP falling at large distances as r-4 corresponds to I = 3 in equation (2.18). As we 
have mentioned, we did not succeed in identifying the finite static current configuration 
whose infinitesimal limit coincides with (5.5). 

The next-in-complexity case corresponds to octupole oscillations of the charge density: 
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The elementary toroidal current distribution giving the same field strengths corresponds to 

(5.7) 

The finite poloidal current distribution whose infinitesimal limit coincides with equation (5.7) 
was obtained in [12]. The asymptotic behaviour of the corresponding VP is determined by 
equation (2.17). 

Now we are able to write more general radiationless chargecurrent configurations. The 
extension of equations (5.1) and (5.6) to an arbitrary multipolarity 1 is given by 

'Pi = "2 = 0 Q3 f C ( t ) ( n V ) [ ( n V ) '  - $AIP(T) 

f ,  = -3f;jc'. 

A, = fq(t)(vv)s3(r) jq = -fq(r)vs3(r). (5.8) 

Here Vi = a fax i ,  v is the vector whose Cartesian components are 

QZ;,,t, is the symmetric traceless form (see equation (2.18)) of the variables n,, ny, n, 
defining the direction of the fixed 3-vector (this vector will later be identified with the 
direction of TS axis). The electromagnetic potentials and field strengths corresponding to 
these densities are 

f s  1 f q  a, = --v- @q = (w")T c r  

f q  1 f; E, = -grad(vV)- + -w- 
r c2 r 

. (5.9) 

H - --(V 1 X V)- f s  
q -  c r 

(remember that argument of the f functions, if not indicated, means t - rfc). 

is given by 
On the other hand, a pure current configuration generalizing equations (5.2) and (5.7) 

pc = 0 j ,  = f c ( t )  CUrl")(P4"$) 

"3 = (;v)s3(r). 

The corresponding electromagnetic potentials and field strengths are 

4%=0 

1 fc 1 L 4n A, = --grad(vV)- +~-v- + - f c ( t ) r ( v V ) 6 3 ( ~ )  
C r c 3 r  c 

(5.10) 

(5.11) 
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Now we place charge-current densities (5.8) and (5.10) at the same point. it turns out that 
if fq = (l/c*)fc then the total electromagnetic field strengths are everywhere zero except 
for the origin: 

G N Afamiev and Yu P Stepanovsky 

(5.12) 
I E = -4alfC(t)vs3(r). cz 

Nevertheless, the electromagnetic potentials differ from zero: 

1 .+ = --x ’ 
1 f c  x = --l(Vv)-. c r 

A = gradx - -4rclfJt)v. S3(7) 
(5.13) 

C C 

Evidently, equations (3.2). (3.31, (5.3). (5.4), (5.6) and (5.7) are the particular cases of 
equations (5.8)-(5.13). 

6. Discussion 

In a previous section we have found elementary chargecurrent configurations with the 
property that electromagnetic strengths, not potentials disappear outside them. Turning to 
equation (5.13) we observe that outside the source A = gradx and q5 = -x / c ,  that is, 
electromagnetic potentials can be presented there as a .?-gradient of a singular function x. 
Does this mean that electromagnetic potentials can be eliminated by a gauge transformation? 
One cannot comment on the topological non-triviality of electromagnetic potentials without 
going beyond the framework of the elementary source. This is due to the fact that it is 
not clear what is the topologically non-hivial point-like source. As an illustration consider 
the vector potential (3.4) of the usual static elementary toroidal solenoid. It turns out that 
outside the origin (where the TS is placed) the VP may be presented as a gradient of function 
,y = -j5(n7)/r3. On the other hand, outside the finite TS (whose infinitesimal counterpart 
is elementary source (3.4)) the VP cannot be eliminated by the gauge transformation (despite 
the fact that E = H = 0 there). This leads to numerous experimental consequences and, 
in particular, to the static magnetic Aharonov-Bohm effect The experiments in which the 
electrons were scattered on the impenetrable magnetized ring were performed by Tonomura 
et al 1241. Their theoretical description was given in 1251. 

Now we turn again to equations (5.12), (5.13). We know 1121 how to find finite 
counterparts of the elementary sources (5.10). For time dependences for which VP can be 
found in a closed form, the prescriptions (5.83-(5.12) lead to the topologically non-trivial 
electromagnetic potentials outside the radiationless sources [9]. However, the uniformity 
of these prescriptions suggests that non-trivial potentials should exist for an arbitrary time 
dependence. In quantum field theory, the elementary radiationless sources are known under 
the title ‘anapole moments’ (or simply, anapoles) (see, e.g., 126-281). They were introduced 
by Zeldovich [29]. To the best of our knowledge the non-trivial radiationless sources 
considered in the previous section are the first concrete realizations of anapoles. It turns 
out that multipole expansion of the field strengths does not exist in the space surrounding 
radiationless sources (these field strengths equal zero there). Since the electromagnetic 
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strengths generating by the oscillating charge densities and the elementary toroidal sources 
are the same (if their time dependences are properly adjusted), particular terms of the 
multipole expansions defining these strengths coincide and have the double names known 
in a physical literature as elecwic (see, e.g., [30]) or toroidal [26] multipoles. Despite the 
coincidence of the electromagnetic strengths, the corresponding potentials may be physically 
different. In those cases the multipole expansion of the field strengths does not describe 
the whole physical situation (since the same multipole expansion of the field strengths 
corresponds to physically different electromagnetic potentials). 

I. Conclusion 

We briefly summarize the main results obtained here: 
1. The radiation field of toroidal-like current configurations has been investigated. For 

a given multipole there are two different representatives which generate essentially different 
electromagnetic fields. 

Elementary time-dependent charge-current configurations outside of which the 
electromagnetic field strengths disappear but the potentials survive were found. In the 
solvable cases their finitedimensional countevarts have~non-trivial (i.e. unremovable by the 
gauge transformation) electromagnetic potentials outside them. This can be used to perform 
timedependent Aharaov-Bohm-like experiments- and information transfer (modulating the 
phase of the charge particle wavefunction). 

3. Using the Neumann-Helmholtz parametrization of the current density we present 
the electromagnetic field of an arbitrary time-dependent chargecurrent density in a form 
convenient for applications. The contributions of different multipoles in it are explicitly 
separated. 
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Appendix 

Consider the poloidal current on the torus surface (p - d)2 -k t2 = R2 which increases 
linearly with time: j =jo t .  To parametrize J it is convenient to introduce the coordinates 
I?, e, x = (d + R cos e) cos 9, y = (d + R cos @) sin (0, t = R sin 3. In these coordinates, 

Here nt is the unit vector tangential to the torus surface 

n* = nz cos - np sin$. 
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It lies in the (0 = constant plane and defines the direction of J. It turns out [6] that for this 
current only the electric strength E differs from zero outside the torus. For simplicity we 
consider the infinitely thin toms ( R  << d ) .  The following representation for the VP is valid 
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[lo]: 

Here 

The integration in CY is performed over the circle z = 0, p 4 d coinciding with the hole of 
the infinitely thin toms. It was shown in [lo] that the VP has singularities nowhere except 
for the line z = 0, p = d into which toms T degenerates itself. Outside this line the 
electromagnetic strengths are 

On the other hand, the electric field produced by two oppositely charged layers p 6 d ,  
z = &E filling the torus hole is given by 

2 e ~  azo! 2 s  a% 
xd2 axaz - r d 2  ayaz 

E E r -  
(A.2) 

We see that Er has a singularity on the circle z = 0, p 6 d .  From a comparison of 
equations (A.l) and (A.2) it follows that if $0 = 8ces/d2 then the electric field of the 
linearly increasing poloidal current is compensated by that of the double layer everywhere 
except for the position of the layer itself. In this case the electromagnetic potentials and 
field strengths are equal to 

iYp=If2=0 H , = @ o t S ( ~ ) S ( p - d ) .  

The Schriidinger equation corresponding to these potentials is 

az 
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Consider the scattering of charged particles on such a chargecurrent configuration (to 
prevent the particle penetration into the torus interior, it can he made impenetrable). Outside 
it the magnetic field H = 0 everywhere, the electric field is also everywhere zero except 
for the singularity at the torus hole. The static scalar and VPS that are linearly increasing 
with time differ from zero everywhere. The integral $ A I  dl taken along the closed path 
passing through the toms hole also grows linearly with time. The question arises as to 
what extent the electromagnetic potentials can be removed from the Schrodinger equation 
(A.4). However, first we remember the situation for the usual static magnetic TS without 
the double charged layer [24,25]. In this case 4 = 0, 

($,, is the magnetic flux inside the TS). The following gauge transformation 

A + A’ = A - gradx + 4 $”= $ exp(iex/hc) 

results in 

The VP cannot be removed from equation (A.5) by the gauge transformation and this leads to 
a shift in the interference picture on the screen installed behind the TS. The corresponding 
experiments have been performed by Tonomura [24] and their theoretical description is 
given in [25]. For the treated timedependent case the gauge transformation which partially 
eliminates the electromagnetic potentials is 

1 A +  A’= A-gradx $J i 4’ = 4 +  - x  
C 

After this transformation 

4’ = A: = A’ = 0 A: = q5ootS(z)O(d - p) Y 

Equations (AS) and (A.6) have essentially the same form. Likewise the static VP 
cannot be removed from equation (AS), the time-dependent YP cannot be removed from 
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equation (A.6). This means that an interference picture that changes with time inevitably 
arises on the screen installed behind the impenetrable TS. The static electric field E filling 
the torus hole certainly deflects the incoming charged particles (via the Lorentz force). 
The charged-particle scattering cross section evaluated according to the laws of classical 
mechanics does not depend upon time. The time dependence of the interference picture 
is a pure quantum effect. It is due to the timedependent magnetic flux enclosed in the 
impenetrable torus. We observe that the effects of the excluded fields (timedependent 
magnetic field confined to the impenetrable torus) are observed against a background of 
accessible ones (the electric field filling torus hole). This agrees with a standard definition 
of the Aharonov-Bohm effect as observable effects of enclosed (or inaccessible) fields 
(see, e.g., [24]). For the cylindrical geometry the magnetic time-dependent AB effect was 
considered recently in [31]. 
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